
Inheritance recap
Object: the superest class of all

Inheritance and text in GUIs

Nothing to check out from SVN

 Sometimes a new class is a
special case of the concept
represented by another

 The new class inherits from
the existing one:
◦ all methods

◦ all instance fields

 Change just what we need
◦ Don’t redeclare fields!

◦ Don’t redeclare methods which
are good enough

◦ But overload ones that aren’t

◦ Make use of super.method and
super() as needed.

The superest class in Java

 Every class in Java inherits from Object

◦ Directly and explicitly:

 public class String extends Object {…}

◦ Directly and implicitly:

 class BankAccount {…}

◦ Indirectly:

 class SavingsAccount extends BankAccount {…}

Q1

 String toString()

 boolean equals(Object otherObject)

 Class getClass()

 Object clone()

 …

Often overridden

Sometimes useful

Often dangerous!

Q2

 Return a concise, human-readable summary
of the object state

 Very useful because it’s called automatically:
◦ During string concatenation

◦ For printing

◦ In the debugger

 getClass().getName() comes in handy
here…

Q3

 Should return true when comparing two
objects of same type with same “meaning”

 How?
◦ Must check types—use getClass()

◦ Must compare state—use cast

@Override

public boolean equals(Object object) {

if (this.getClass() == object.getClass() {

THIS_TYPE other = (THIS_TYPE)object;

// Then compare this and other’s fields.

}

return false;

}

Recall that the cast
would throw a new
ClassCastException if
the object isn’t
THIS_TYPE

Q4

 A subclass instance is a superclass instance
◦ Polymorphism still works!

◦ BankAccount ba = new SavingsAccount();

ba.deposit(100);

 But not the other way around!

◦ SavingsAccount sa = new BankAccount();

sa.addInterest();

 Why not?
BOOM!

Q5

 Can use:
◦ public void transfer(double amt, BankAccount o){

withdraw(amount);

o.deposit(amount);

}

in BankAccount

 To transfer between different accounts:
◦ SavingsAccount sa = …;

◦ CheckingAccount ca = …;

◦ sa.transfer(100, ca);

 If B extends or implements A, we can write

A x = new B();

Declared type tells which

methods x can access.

Compile-time error if try to

use method not in A.

The actual type tells which

class’ version of the

method to use.

 Can cast to recover methods from B:

((B)x).foo()

Now we can access all of

B’s methods too.

If x isn’t an instance of B,

it gives a run-time error

(class cast exception)

Q6-8, pass in when done & start BallWorlds

Whatever you don’t finish is
homework due next session.

Near the end of class, you
should do item 1 on HW18:
complete the partner survey
for the term VectorGraphics
project, since I need to form
teams before next class.

